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The flow and density distribution produced by injecting dense fluid upwards a t  the 
bottom of a homogeneous fluid have been investigated experimentally and 
theoretically. Both axisymmetric and line sources have been studied using small- 
scale laboratory experiments in which salt water is injected into a tank of fresh 
water. The turbulent fountain formed in this way rises to  a maximum height which 
can be related to  the Froude number of the inflow, and then falls back and spreads 
out along the floor. Continuing the inflow builds up a stable stratification in a similar 
manner to that discussed earlier for the ‘plume filling box model’ of Baines & Turner 
(1969) which is complementary to the present work. The fountain flows considered 
here have the important new feature that the volume of the inflow is significant, so 
the total volume of fluid in the ‘open ’ container increases with time. The evolution 
is determined by the rate of entrainment into the fountain from its surroundings, 
which is found directly by experiment. Re-entrainment of fluid into the fountain 
continually changes the density profile in the mixed fluid collecting a t  the bottom of 
the chamber below the level of the fountain top, and controls the rate of rise of a 
‘front’ of marked fluid. The top of the fountain rises linearly in time, a t  a rate which, 
for axisymmetric fountains, has been shown both experimentally and theoretically 
to  be close to half the rate of rise of the free surface due to the inflow. Thus a t  a 
certain time the front rises above the top of the fountain. Once the mixed fluid a t  the 
bottom of the chamber has risen above the fountain its density profile remains 
unchanged. The front velocity, the fountain height and the density profile have all 
been obtained as functions of time using a theory which is in good agreement with 
the experimental results for a large range of input Froude numbers. For line 
fountains the results are less precise owing to an instability which causes the flow to 
switch irregularly from a symmetrical state to one in which the downflow occurs on 
one side only, and with a smaller maximum height. I n  concluding we discuss the 
applications which motivated the work, particularly the development of a stratified 
hybrid layer in magma chambers replenished from below, and the dynamically 
identical, but inverted problem of heating large buildings through ducts located near 
the roof. 

1. Introduction 
The problem of convection from a small source in a confined region was first solved 

explicitly twenty years ago (Baines & Turner 1969). In that paper we calculated the 
effect of continuous convection from point or line sources of buoyancy alone on the 
properties of the surrounding fluid, which was originally uniform in density and of 
fixed volume. In  particular it was shown that an asymptotic state is attained, in 
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which the density profile is fixed in shape, but the density is increasing (or 
decreasing) a t  a constant rate a t  all levels, as a result of the combined effects of 
entrainment into the plume and vertical advection in the environment. This kind of 
problem is now generally referred to as ‘the filling box model ’, but perhaps it should 
more correctly be called the ‘plume filling box model’ because it considered only the 
case where buoyancy and the resulting momentum act in the same direction. 

In  carrying out experiments to test the theoretical results i t  was convenient to  use 
sources of concentrated salt solution flowing downwards into a tank of fresh water 
to form a turbulent plume. The momentum of the inflow was kept as small as possible 
so that it approximated to a pure buoyancy source, but inevitably a small extra 
volume flux was added, which could be ignored for the purpose of evaluating the 
theory. Modifications have subsequently been made to take account of the 
momentum flux (Baines & Murphy 1986) and of the changing volume of the region 
under consideration, due either to  the input or to  the entrainment of fluid across an 
interface bounding the layer (Baines 1975 ; Kumagai 1984). I n  each of these cases the 
addition of extra fluid makes only a small difference to the calculations. 

The flows studied in this paper are related to the above filling box problems, but 
they arise in practical situations where the input of a large volume of source fluid 
cannot be ignored. Another essential difference is that the initial momentum and 
buoyancy act in opposite directions so that, for example, dense fluid ejected upwards 
is acted on by buoyancy forces which reverse its motion, and finally falls back around 
the upflow in the form of a ‘fountain’. The ‘fountain filling box model’ is therefore 
the complementary problem to the plume filling box. Both have wide applications in 
engineering and in nature. For example, when a room is heated in winter by forcing 
hot air through vents in the floor, the plume filling box model is appropriate. I n  
summer, when the room is being cooled by forcing cold air through the same vents, 
it is the fountain filling box model that must be used. The various applications will 
be discussed in more detail in a later section, but two of them which provided the 
original motivation for the work reported here will be mentioned now. Campbell & 
Turner (1989) have applied the results of preliminary experiments of this kind to 
magma chambers, replenished from below with a turbulent input of hot magma 
which is denser than that already in the chamber. They have shown that this new 
magma can be injected with enough upward momentum to rise high into the 
chamber and mix extensively with the resident magma and fall back to  form a hybrid 
layer. One of us (W. D. B.) has been concerned with the ventilation of large open 
structures such as aircraft hangars, which are heated using ceiling-mounted fans to 
drive hot air towards the floor. The flow produced in this case is the inverted 
equivalent of the replenished magma chamber, and both of these can be studied and 
the evolution of the density structure understood using laboratory models in which 
dense salt solution is injected upwards into fresh water. 

The meaning of the term ‘open chamber’ in the present context should be made 
clear. In  the laboratory analogue experiments it means that the surface of the fluid 
is free to rise at the rate of injection of the dense fluid, and that the front of the mixed 
fluid and the density structure below it are evolving in an environment which is 
moving upwards a t  this mean rate. I n  the applications it implies that  any removal 
of4uid from the region of interest must take place above the level of the front, from 
the region that is not affected by the mixing. For example, in a magma chamber the 
injection of dense magma a t  the bottom can be compensated for by expansion of the 
chamber or by the eruption of an equal volume of the original magma a t  the top. In  
a ventilated building cold air might be allowed to flow out near the floor a t  the same 
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rate as heated air is injected a t  the top. It is quite different from the case where both 
inflow and outflow are behind the front, corresponding for instance to  an intake into 
the ventilation system being located near the ceiling. The evolution of this latter case 
is the subject of a separate study (Baines & Reedman 1990), and for our present 
purposes we need to  note only that it leads to the formation of a sharp interface 
between the injected and the original fluid, located a t  the height of the top of the 
fountain, quite different from the behaviour described in this paper. 

In addition to  the work already referred to  there are several papers that  provide 
relevant background to the present study. Morton (1959) produced a theory for 
forced plumes which indicates that, in the case where the momentum and buoyancy 
are opposing, the flow is little affected by buoyancy till very close to  the level where 
it is brought to  rest, and also predicts the way in which the penetration depth 
depends on the external parameters. Though this theory ignored the effect of the 
opposing return flow (the outside of the fountain), experiments by Turner (1966) 
using salt fountains injected upwards into fresh water verified Morton’s functional 
dependence of the height on the momentum and buoyancy fluxes, and obtained 
numerical values for the steady fountain height which will be used in the present 
study. Turner (1966) did not address the problem of a changing environment - all the 
fluid falling back from the fountain was removed below the level of the source and 
did not build up as a layer which was re-entrained into the fountain. Seban, Behnia 
& Abreau (1978) studied heated air jets discharged downwards, and concluded that 
the penetration depth and the centreline temperatures could be adequately predicted 
using a theory based on the downward flow alone, though their radial temperature 
profiles gave evidence of a substantial interaction between the two parts of the flow. 
The most thorough experimental study of a two-dimensional fountain is that of 
Goldman & Jaluria (1986). They used hot air blown downwards from a slit into a 
chamber of air a t  room temperature to simulate motions generated by fires in an 
enclosure. They measured the penetration distance and the velocity and temperature 
profiles for both free and wall jets, and showed that the major parameter determining 
the flow is a Froude number, as will be discussed in detail in following sections. They 
concluded that the effect of the opposing buoyancy is very important in many 
problems of practical interest. Note, however, that in this experiment too the 
environment was not evolving in time, and a steady state was attained by allowing 
the heated air to flow out of the enclosure a t  its open top. The experiments and 
related theory presented below are designed to remove this limitation, and to study 
explicitly the evolution of the coupled flows in the fountain and its surroundings. 

2. Description of the flow 
Before presenting the detailed experimental results and the associated theory, we 

shall describe the laboratory experiments in qualitative terms and the physical ideas 
needed to  interpret them. The basis for the quantitative model developed will then 
become clearer. The first experiments on turbulent fountains are described in Turner 
(1966) and a discussion of the experiments that led up to  the present fully 
quantitative study is to be found in Campbell & Turner (1989). 

The experiment consists simply of ejecting a turbulent jet of salt solution upwards 
from a nozzle projecting some distance above the bottom of a tank containing fresh 
water. The general arrangement and the notation used in the rest of the paper are 
sketched in figure 1. (The case of a vertical round outlet will be described first, though 
other configurations have also been studied.) The jet rises into the environment and 
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FIGURE 1. Definition sketch for the flow in a circular fountain. 

loses momentum steadily due to  the opposing buoyancy forces. The injected fluid 
reaches a maximum height and falls back around the upflow, accelerating as it does 
so. The upflow is now mixing with downward-moving fluid which is also denser than 
the environment, so that the height of the top of the fountain falls from its initial 
height to a steady mean value x,, about which there are small random fluctuations. 
With a source inclined a t  a small angle t o  the vertical z, does not decrease, since the 
upflow and downflow regions are then separated and do not interfere with one 
another. When the downflow reaches the bottom of the tank i t  spreads out sideways 
to form a denser layer of fluid. During the experiment, in particular when the jet flow 
is first turned on, a neutrally buoyant dye marker is injected to mark a volume of 
fluid which has been in the fountain at a particular time. 

The first heavy fluid to reach the bottom has a small density discontinuity above 
i t  (the first front). The turbulence in this layer quickly dies out, and provided the 

FIGURE 2. Photographs of fronts produced by axisymmetric fountains. (a )  and ( b )  relate to 
experiment A9 in which the source was vertical; r, = 0.091 cm, &, = 4.83 cm3 s-', A ,  = 43.1 cm s-', 
Fr, = 93.8. (a )  The early stage t = 2 min 30 s after the start of the flow showing the fountain 
rising high above the first front. The flow is marked by a suspension of mica flakes. ( b )  Much later 
( t  = 2 h 0 min after the start). The front, marked by fluorescein dye, has risen above the top of the 
fountain, which was made visible by the injection of fresh dye through the inclined tube shortly 
before the photograph was taken. ( c )  An inclined fountain and the associated front (experiment A8, 
with T, = 0.187 cm, Q, = 13.8 cm3s-l, A ,  = 84.4 cm P, Pr, = 31.9 at t = 6 min 30 s), showing the 
separation of the up- and downflows. 



Turbulent fountains in an open chamber 

FIGURE 2. For caption see facing page. 

56 1 



562 W.  D .  Baines, J .  S. Turner and I .  H .  Campbell 

FIGURE 3. The front produced by a symmetrical line fountain (experiment B7, with b, = 0.00164 
cm, qo = 0.464 cm2 s-l, A ,  = 73.2 cm s-'). ( a )  t = 30 s: the top of the fountain is above the first 
front ; (6) t = 4 min : the first front has just passed the top of the fountain, and is being deflected 
downwards by the entrainment. 

tank is sufficiently wide compared with the fountain height, the fluid in this layer can 
be regarded as part of the environment so far as the continuing flow in the fountain 
is concerned. Because the bottom layer is denser than the original fresh water, the 
outer part of the fountain that entrains it arrives at the bottom of the tank even 
heavier and flows underneath. The first front is pushed upwards, and a stable density 
gradient develops in the hybrid layer below it, just as i t  would if a dense plume were 
injected a t  the level of the top of the fountain (Baines & Turner 1969). If more dye 
is added to the jet a t  a later time it too spreads along the bottom and is lifted as a 
horizontal layer. During the early stages of an experiment the fountain entrains 
mainly the fluid above the front and so the front rises rapidly, with the ' mixed ' layer 
consisting of a small fraction of the input fluid and a larger volume of the 
environment which has been mixed into i t ;  this is the stage pictured in figure 2(a ) .  

As filling continues and the hybrid layer grows, the fountain ent,rains less of the 
environment fluid above the front, and more of the gradient region below the front 
is recycled into the fountain. Thus the mean density of the hybrid layer continually 
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increases, and since the height of rise of the fountain is determined by the difference 
in density between the fountain and its immediate surroundings, a fixed input 
momentum flux raises the fountain to steadily increasing elevations. The rate of rise 
of the first front is reduced as the net entrainment of environmental fluid decreases, 
but it remains greater than the rate of rise of the top of the fountain. At a certain 
height and time (which we shall determine) i t  overtakes the fountain and rises above, 
it, as shown in figure 2 (b ) .  After this time the fluid above the first front can no longer 
be entrained into the fountain, and so the rate of advance of the front is controlled 
entirely by the rate at which fluid is added to  the tank. The density structure above 
the top of the fountain cannot be further affected by the fountain and is advected 
upwards with the density it had when it passed the fountain top. The density profile 
below the top of the fountain a t  any time continues to  be modified by the 
combination of advection and re-entrainment. It was the recognition of these two 
distinct stages, and the need for a careful treatment of the second which has no 
equivalent in the ‘plume filling box’ problem, which has led to the work reported 
here. 

Line fountains evolve in a similar way, as shown in the two photographs of figure 
3, taken when the first front was respectively below and above the top of the 
fountain. Anew feature was observed in this case, however, which was quite different 
from the behaviour of the axisymmetric fountain. A symmetrical downflow each side 
of the upflowing jet could not be maintained indefinitely ; a t  intervals the fountain 
became unstable and all the downflow moved off to one side for a time. There was 
a marked decrease in the height of the fountain during this period, while the height 
of the front on that side increased more rapidly as more fluid was supplied to it. This 
behaviour will be discussed in more detail in $4.2 (see also figure 11). 

In  the following section we present the work on axisymmetric fountains. After 
describing the experimental methods, we discuss several illustrative plots of the data 
as a further aid to understanding the principles involved. The detailed theory for the 
motion of fronts and the evolution of the density profiles is then developed and 
compared with the measurements. The corresponding results for line fountains are 
presented in $4. In  the final section we discuss and sum up the results and comment 
on their application to the problems that motivated the study and to a wider range 
of related flows. 

3. Axisymmetric sources 
3.1. Experimental methods 

All of the experiments were conducted in a tank made of acrylic plastic 60 cm deep 
and 70 cm square in horizontal cross-section. It was partially filled with tap water 
and then salt water was introduced through a source in the centre of the base, using 
a pump and flow meter in the supply line to control and monitor the flow rate. The 
source fluid issued from a straight length of tubing of either 6, 4, 2 or 1 mm inside 
diameter and each tube was 10 diameters in length to give a uniform flow at the 
outlet. In  every experiment the flow in the source tubing was laminar but the jet 
issuing into the fresh water was turbulent within 3 mm of the outlet. Experiments 
were conducted both with the outlet vertical, or at a small angle to the vertical 
(arbitrarily set a t  7’; see figure 2 c ) .  

The controlling parameter in the rise of the fountain is the Froude number, the 
determination of which requires the volume, momentum and buoyancy fluxes to be 
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specified. The first and third are easily metered at  the source but the momentum flux 
depends on the velocity distribution a t  the outlet. One might assume from the start 
that the flow in the outlet pipe is laminar, but this was checked directly by testing 
each source as a weakly buoyant jet as follows. Fresh water containing a marker dye 
was injected into the tank which contained salt water. A front formed at the free 
surface when the jet impinged on it and this front could be followed and its elevation 
measured as it progressed down toward the source elevation. This is the method used 
by Baines & Turner (1969) to evaluate the entrainment coefficient. In  the case of jet- 
like flow a plot of the logarithm of elevation above the virtual source against time 
yields a straight line. (Thus the actual position of t,he virtual source may be 
determined by varying the assumed location of the source until a straight line is 
obtained. It was found that the source was in fact a t  the end of the outlet pipe, and 
this was verified by tracing the outline of the jet back to the source.) The slope of the 
line is proportional to the entrainment coefficient and the square root of the 
momentum flux. Taking the entrainment coefficient to be 0.057, the momentum flux 
for each source corresponded to that of a flow with constant velocity across a hole 
having a diameter of 0.83 timcs the tube diameter. This value is close to 4 3 1 2  = 0.866, 
the value to be expected for laminar flow in the tube. 

During each experiment measurements were made of the height of the fountain, 
the elevation of fronts in the environment and the density distribution within the 
environment. The fountain and fronts were made visible by injecting 5 cm3 of either 
a suspension of mica flakes or fluorescein dye into the source line. Usually the flakes 
were used at the start of the test and produced a white first front. Fluorescein was 
introduced later to mark other levels in the flow, which we have called the second and 
third fronts. Precise illumination was provided by photographic floodlights shone 
through 1 cm wide vertical slits in the sides of the tank. The back of the tank was 
covered with black paper and the room was darkened to produce sharp photos. 
Elevations were recorded by photography for the first few minutes as the fronts 
moved rapidly and later, as the fronts sharpened, the level could be read to an 
accuracy of 1 mm by eye. 

Measurements of fountain height were also made both from photographs and 
visually. During the hour or two duration of a typical experiment photographs were 
taken a t  regular intervals and the fountain height as well as the location of fronts was 
recorded. This can be seen in the steady progression of the fronts in figure 4. 
However, the scatter of the fountain height measurements is much larger than the 
accuracy of individual measurements as can also be seen in figure 4. The top of the 
fountain oscillated over several centimetres with periods of the order of minutes. A 
separate set of experiments was conducted in which the fountain was observed for 
several minutes and a single representative mean value was recorded. The scatter in 
data obtained in this way was much less. 

It was found that starting or stopping the source did not disturb the fronts, so 
density profiles could be taken a t  any time by stopping the flow to the source. A 
syringe was connected to  length of tubing 0.5 mm in diameter and the end placed a t  
a measured elevation. About 5 cm3 of water was removed and the density determined 
using an Anton Paar density meter. The accuracy of determination was about 

g cm-3 but the plot of results from a typical experiment in figure 5 shows that the 
scatter is about 10 times larger. This is due to the inaccuracy in holding the elevation 
of the sampling tube constant during removal of a sample and the uneven 
withdrawal rate. The data in figure 5 have been plotted relative to the free surface 



30 

20 

z (cm) 

10 

Turbulent fountains in an open chamber 

i 
20 40 60 80 100 

I I I I I 

T 
B 
0 
0 
0 
0 
0 
0 

0 
0 
0 

) I 0 
LI 

I 

0 0  60 0 120 
t (min) 

565 

120 

100 

80 

60 f 

40 

20 

0 

FIGURE 4. The measured elevations of two fronts and the top of the fountain as functions of time 
for experiment A17 (To = 0.271 cm, Q0 = 14.6 cm3 s-l, A ,  = 162.8 cm s-’, Fr, = 8.94). 0, first front; 
0, second front; T, height of fountain. The lines drawn correspond to the rate of rise of the free 
surface. 

to show, as we have discussed above, that after the first front reaches the top of the 
fountain the density profile has an unchanging form in the region above the top. 
Below the top the density continuously increases to approach the density of the 
source fluid at large times. 

3.2. DimensionZess equations and the initial fountain height 
Consider a source of heavy fluid infected with upward momentum into the bottom 
of an environment of lighter fluid which is infinite in extent horizontally. If the 
source is small compared with the height of the resulting fountain the flow will 
depend only on the fluxes of buoyancy Fa and momentum Ma defined by Ma = nrt 
and Fa = K A ,  ri U,, where ro is the source radius, U, is the mean velocity at  the source, 
and A ,  = g(po-p i ) /p i ,po  being the density of the input fluid and pi the initial density 
of the environment. It will not depend explicitly on the volume flux &, = nr; U,, once 
the position of the virtual source has been determined. As shown in Turner (1966) the 
height of the fountain is defined by dimensional consistency as 

z, = constant xi@ Fib. (1) 
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FIQURE 5. Density profiles plotted as a function of the depth below the free surface for the stratified 
layer produced by an axisymmetric fountain. The left and lower scales refer to dimensional 
variables, and the right and upper scales to dimensionless variables. The experiment is one carried 
out by Campbell & Turner (1989) but not analysed in detail in that paper. Q, = 14.4 cm3/5, 
r,, = 0.363 cm, Apo = 0.0201 gm/cm3, Pr = 13.8; +, i= 1.6; X ,  3.2; V, 6.73; A, 1 1  ; 0 , 2 2 ;  0,44. 
The curves drawn are theoretical predictions, as discussed later in $3.4. 

By the same reasoning, the total volume flux entrained by the fountain between the 
elevations z, and z can be expressed as 

These equations can be written in a more convenient form for interpreting the 
experimental measurements by using the buoyancy and velocity a t  the source and 
the source radius ro. This leads to the relations: 

5- - constant, 
r,, Fr 

Q = f n ( L )  
Qo Fr r,Fr ' 

where Fr is a Froude number defined by 

(3) 

(4) 
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FIGURE 6. Dimensionless height of a circular fountain with a vertical source, as a function of 
Froude number, measured by various observes: T, Turner (1966); X ,  Seban et aE. (1978); +, 
Reedman (1986 unpublished) ( T ~  = 0.073 em) ; Morala (1985 unpublished), using ro = 0.073 cm and 
various Apo/po: .,0.178; 0 , O . l O ;  0 , 0 . 0 6 ;  0 , 0 . 0 3 ;  A, 0.01; V, 0.006; 0, the present study (with 
ro = 0.0434.187 em). 

The results of the present experiments, the values of z, for vertical fountains, have 
been plotted in figure 6 in terms of the Froude number, together with the 
measurements made by Turner (1966) and Seban et al. (1978), and in unpublished 
experiments carried out in W.D.B.’s laboratory by T. J. Reedman (1986) and E. 
Morala (1985). The value 2.46 for the constant in (3) was fitted by Turner (1966) for 
experiments conducted at  small Fr and it holds accurately over the larger range in 
Fr covered in figure 6. It is evident to the eye that z, increases as the fountain is 
deflected from the vertical, and the measurements plotted on figure 7 for a 7’ 
inclination follow a steeper slope as expected. The constant 2.88 shows that the 
height increase is about 17 %. The mean height is larger, and the oscillations of the 
top of inclined fountains are smaller, because the turbulent downflow does not 
interfere with the upflow as it does for vertical fountains. 

Some measurements of the entrained flux Q, into a vertical fountain were made 
by T. J. Reedman (1986, personal communication), using a method developed for 
plumes by Baines (1983). These measurements showed a linear increase of flux with 
depth below z,, indicating that (4)-should be of the form 

The density of the environment was not monitored carefully enough in these 
experiments to specify the constants C and B with certainty, although since Q, = 0 
when z = z, we know that C / B  = 2.46. 

This simple result suggests that we might seek a more fundamental explanation of 

I9 
PLM 212 
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FIGURE 7 .  Dimensionless height of a circular fountain from a source inclined at 7" from the 
vertical, as a function of Froude number: A, r0 = 0.046 cm; 0,  0.091 cm; 0, 0.187 cm. 

the rate of entrainment into a fountain, by relating it to the behaviour of the up- and 
downflows using Taylor's entrainment hypothesis, that  the inflow is proportional to 
the local mean velocity. (See Batchelor 1954; Morton, Taylor & Turner 1956; Turner 
1973 and the more recent survey by Turner 1986.) First, the rate of entrainment per 
unit area into a pure jet is proportional to z-l, and the radius increases linearly with 
z ,  so that the total inflow per unit height is constant, as implied by (6). The solution 
for entrainment into the upflow of a negatively buoyant jet obtained by Morton 
(1959) showed a variation that differed little from this up to a point very close to the 
reversal level. However, this argument does not allow for the fact that, in a steady 
vertical fountain, the upflowing jet can interact with the environment only through 
the descending outer part of the fountain. This downflow can be thought of as a line 
plume, with constant buoyancy flux distributed round a ring, entraining fluid a t  its 
outer boundary and losing a small fraction of its flux to the upflow. The diameter of 
this annular source is determined by the upflow as it is brought to rest by the 
negative buoyancy, flows outwards and begins to descend. The mean vertical 
velocity for a line plume is constant with height, provided the change of buoyancy 
flux due to  entrainment into the upflow can be neglected. Since the outer diameter 
of the fountain is also nearly constant (Turner 1966) the application of the simple 
entrainment assumption again leads to the result that the total inflow per unit height 
should be constant. 

With both the experimental evidence and the above arguments in mind, (6) will be 
adopted for the analysis in this paper. The determination of B provides the measure 
of the average inflow per unit height 



Turbulent fountains in an open chamber 569 

and this is the only free parameter required to complete the theory developed below. 
Note that (7) indicates that the local entrainment is independent of the Froude 
number of the source. 

3.3. Theory for the motion of fronts 

What we have called a front is formed from dyed fluid entering the environment at 
the bottom, which may be below the elevation of the source. As the turbulent 
downflow impinges on the floor of the container it spreads over the floor as a 
turbulent gravity current. The turbulence may die out before the flow reaches the 
container walls but the layer of dyed fluid retains a finite thickness over the entire 
floor. The fluid which flows from the fountain mixes with some of the layer on the 
floor and so removes some of the dye marker. Most of the dyed fluid is pushed upward 
by the fluid which flows out from the fountain after the marked fluid and this forms 
a front about one centimetre thick. As it is pushed up by the fountain fluid it becomes 
thinner as the entrainment flow qe incorporates some of it back into the downflow of 
the fountain. 

The motion of the front is defined by writing the equation for conservation of 
volume flux in the layer between the floor and the top of the front a t  elevation z :  

where A is the cross-sectional area of the tank and z is defined on figure 1. Defining 
the dimensionless variables 

and introducing (6) in (8), we obtain 

_.- dz" l+CFr-Bz". 
di!- (9) 

This is an equation which can be integrated directly to give z" as a function of i! 
provided that Fr can be expressed as a function of z" or rand Fr,, the initial value of 
Fr, which is the basic source parameter determining the flow in the fountain and in 
the surrounding environment. As time progresses the density in the layer of depth 
z",,, + Zs increases and so the relative buoyancy of the fountain fluid decreases and the 
Froude number increases. It will be assumed that Fr as it appears in (5) is defined 
by the mean density p in the new environment of the fountain, i.e. in the stratified 
layer of height z, + z,, and the corresponding d = g(p-p,)/p,. Thus, defining Fr, as 
the value when the front is at the source elevation 

(10) Fr = Fr,( 1 - d/do)-i x Fr,( 1 ++J/d,). 

Linearization provides a good approximation at least for large Fr, and until the front 
overtakes the top of the fountain, since (J/do) 4 1 under these conditions, as shown 
in $3.3.1. 

The mean density p is always greater than pi, which is the initial mean density in 
the environment, since it is produced by the inflow of fluid of density po from the 
source. During the interval (i!'-<) when the front is below z" = z",,, all the excess dense 
fluid accumulates in the layer for which d i s  defined. Thus 

J(Zm + z",) = do(t"- t;) = do t; ( 1 1 )  
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where Fr, = ( B / C )  Zmi from (3) and (6), and Zmi is defined as the initial dimensionless 
fountain height. The further approximation that Zrn varies by only a small fraction 
of its initial value over the region of interest, i.e. putting Zrn = Zmi in the last term on 
the right-hand side of (12), gives 

where Er is a measure of the effect of the elevation of the source above the floor. 

in (9) gives the differential equation for the layer depth 
Using the same approximation Em = .Zmi in (12) and inserting the above relations 

= 1 +BZrni +!$I&. fl -Bz". 
d.2 
dfl 
- 

Integration of (14) from z" = .Ze-ES at fl = 0 (where Ze is the height a t  which fluid 
enters the new environment of the fountain ; see figure 1 and 9 3.4) to a general height 
z" gives 

(15) 

where the first two terms on the right give the front position for a fountain of 
constant height and the other two terms result from adding the linear increase of 
fountain height with time given by (13). 

The simultaneous solution of (13) and (15) for z' = f gives the crossover time f: 
when the front is a t  the elevation of the top of the fountain z", 

z =  ( ~ ~ - ~ e - B t i +  zrni+- (l-e-Bji)+lz f -2(1-e-B&), z" 
2B - (  a 2 r 1  

where Zr = ~rnl/(Zml+z"s) is assumed to be constant. 
As a further check on the consistency of this solution we can substitute (13) for z" 

on the right-hand side of (14) and verify that dz"/dfl = 1 at z" = z",. Thus the solution 
matches smoothly into the solution for the front above the crossover point, where it 
rises at unit (dimensionless) rate, determined entirely by the rate of addition of fluid 
to the tank. 

3.3.1. Comparison with experiments 
It is now possible to assess the approximations in the analysis by using the above 

results together with the experimental values. The smallest Froude number studied 
was approximately equal to 9 with Zr about 0.5. The above equations indicate that 
i?: is approximately 8 and the density ratio in (10) a t  the crossover is about 0.2. The 
height of the top of the fountain x, increases by about 10 Yo during the time the front 
rises from the source to z, so Zr increases by 4 YO. This indicates that (10) and the 
solutions (15) should be revised for accurate representation a t  the smallest Fr. For 
Fr 2 20 the approximations are much more accurate. 

Equation (15) has been fitted to the measured front elevations for all of the 
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is producing it (T), as functions of time. Both dimensional and dimensionless scales are shown. (a) 
First front of experiment A17. (b) First front of experiment A9. The source parameters of these 
experiments are listed in the captions to figures 4 and 2 respectively. The full line is equation (15) 
with B = 0.25; the dashed line is the linear approximation for z, in each case, and * denotes the 
cross-over point. 
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experiments. The value of Zmi was specified by (3) and x, was the height of the source 
above the bottom of the tank. The value of B was adjusted to give the best fit of (15) 
to the measurements. Figures 8 (a )  and 8 (b)  present the plots for two cases of the 
vertical fountain and figures 9 (a )  and 9 (b)  present those for the 7' inclination. In all, 
nine experiments were carried out with a vertical source and five with a source 
inclined at 7' to the vertical, and usually two or three fronts were followed in each 
case. Mean values of B were B = 0.25f0.03 for the vertical and B = 0.35f0.03 for 
the inclined fountains, and there was no systematic variation with other parameters 
such as Fr,. (A full listing of the results can be made available to interested readers.) 
No difference could be discerned for later fronts compared to the first front launched 
at  t"= 0, provided that, in each case, the value of Zm used corresponded to the height 
of the fountain at  the time the new front passed the level of the source. This means 
that the front rise is not strongly affected by the density profile below Zm. The first 
front has a uniform density above it and all later fronts move through a continuously 
stratified layer. It should be noted, however, that the accuracy of determining B by 
this fit is about f 5 YO. 

A value of B = 0.35 for the inclined fountain where the up- and downflows are 
separated is close to the entrainment to be expected for a pair of pure jets. The 
entrainment flux into a jet described by Gaussian profiles is 

(17) qe = 2na d2 U, ro 

where a is the entrainment constant. The experiments of Albertson et al. (1950) are 
fitted by a = 0.057 which gives B = 0.161. A pair of jets flowing in opposite directions 
would give B = 0.322 or about 10% less than the value obtained for the inclined 
fountain. 

Note that once a generally applicable value of B has been found experimentally for 
a particular angle of inclination, the whole of the fountain behaviour and the 
character of the filling-box solution are determined by the initial Froude number Fri. 
In principle, we could calculate a one-parameter family of solutions for idealized 
starting conditions (e.g. Z, = 0) ,  but we have chosen instead to give just a few 
illustrative examples .of the procedure. 

3.3.2. The fountain height at later times 
Once the layer depth overtakes the fountain height, dapproaches more and more 

closely to A ,  and we can no longer rely on the linearized equation (10) and its 
consequence (13) as a basis for calculating the fountain height. At this stage we must 
also allow for the fact that buoyancy is being advected upwards above the top of the 
fountain. 

The form of the density profile will be calculated as a function of time in the 
following section, but an important simplification can be made already on the basis 
of past and present experimental results. It has been shown by Campbell & Turner 
(1989) that the density profile, at the stage where the first front has passed the top 

FIQURE 9. The elevations above a source inclined at 7" from the vertical of a front 0 and the top 
of the fountain T, as functions of time. Both dimensional and dimensionless scales are shown. (a) 
First front of experiment A8 (r ,  = 0.187 cm, &, = 13.8 cm3 s-l, A ,  = 84.4 cm s - ~ ,  Fr, = 31.9). 
The full line is equation (15) with B = 0.35. ( b )  First front of experiment A12 (r,  = 0.046 cm, 
&,, = 2.08 cms s-l, A ,  = 42.2 cm s-', Fr, = 250). The full line is again equation (15) with B = 0.35. 
The dashed line on each figure is the linear approximation for z,, and * denotes the cross-over 
point. 
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of the fountain and the volume of input fluid is comparable with or greater than the 
entrained fluid, can be well represented by a constant A u p  to z, where there is an 
abrupt change of gradient and a rapid decrease to the environmental value at z, the 
position of the front. The nearly constant density in the layer below z, becomes an 
increasingly good approximation a t  larger times. 

Using this assumption we can say therefore that the buoyancy added per unit 
time, namely A, Qo, is feeding a layer of depth z,, area A and uniform buoyancy 2 
This layer is increasing in depth and has a flux of buoyancy out of its top because of 
the relative motion between the front and z,. The buoyancy in the layer is JAz,. The 
relative velocity through the top is (Q,/A-dz,/dt) and the flux is dA times this 
velocity. Equating the rate of inflow to the rate of change of buoyancy in the layer 
plus the loss across the top we obtain 

or in dimensionless form 

_ -  d d  ( A o - d )  
dt"--' %n 

The exact form of (10) can be written as 

x, = - 
( A o 2 A - ,  

so that A o - 6 =  A,/% 

and 
d d  2A0dZm 
dt" ,% dt"' 
__-  - -- 

Substituting (20) and(21) in (19) gives finally 

Thus we have arrived a t  the striking result that the top of the fountain should rise 
a t  just half the upward velocity of the first front. This is valid for large times under 
rather weak assumptions which are compatible with the observations. The same 
result holds in the early stages of rise for fountains produced by outflows close to the 
floor, for which z, can be neglected when compared with z, in (13). The result (22) 
is confirmed by our experimental observations, and by long runs of the numerical 
simulation. 

The dimensionless rate of rise could increase above 4 a t  intermediate times when 
the density at the fountain top is somewhat less than the mean density in the layer. 
The effect of decreasing the buoyancy flux out of the top of the layer is to decrease 
the density difference between the fountain and its environment and hence increase 
the rate of rise of the fountain. 
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3.4. Theory for density distribution in the environment 

Since the molecular transport of density is negligible compared with the transport by 
convection, the fronts seen in the experiment define lines of constant density. Thus 
the density injected in the environment at the bottom moves upward with steadily 
reducing velocity until it reaches z,. It enters the quasi-static layer between z ,  and 
the free surface and subsequently moves upward with velocity Q,/A. Relative to the 
free surface the density profile in this upper layer is constant. Although the density 
distribution as a function of time can be described by the Eulerian equation 

where w is the vertical velocity in the environment, it can be expressed in a simpler 
form by the Lagrangian relation 

A ( z , , t )  = d(z , t+ t ’ ) ,  (24) 

where z, is the elevation at which fluid effectively enters the new environment of the 
fountain (see figure l),  and t’ is the passage time from z, to z for a front starting at  
t ,  i.e. t’ = t ’ ( t ) .  

Equation (24) does not lead to an explicit form for the density distribution but the 
equations do give an implicit solution. In the particular case of the first front A,,  the 
value of A corresponding to z, can be defined explicitly for 0 < t < t* and so this value 
and (15) define the density profile, with (24) providing the time relation. For t > t* 
a numerical procedure can be used to predict the later location of a known value of 
A,. The one adopted here uses integer values of the time increment 6t for both t and 
t’. The buoyancy A ,  is calculated using relations developed below for a series of 
integer multiples of at. Then the time of entry of this front to the quasi-steady layer 
is calculated, using (16) to calculate t* and converting this to an integer. This 
procedure defines the density at the elevation y below the free surface, which is given 
by the relative motion of the top of the fountain 

Using the linear approximation (13) we obtain the dimensionless form 

3.4.1. Determination of density at entry to the environment 

relation 
Conservation of buoyancy flux in the fountain and the fluid it entrains gives the 

where A ,  = buoyancy of the fluid as it reaches the bottom of the tank, and the other 
quantities have been defined in $3.2. This defines the flow into the turbulent mixed 
layer which is formed from the fountain as it first spreads out along the bottom of 
the tank. The properties of this layer of thickness z, and buoyancy A ,  say have not 
been studied in detail but it was noted that the thickness and intensity of turbulence 
increase with Fr for a given tank size. If the time required to produce a well-mixed 
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bottom layer is small compared with the time required for a front to travel to z ,  then 
the equation for conservation of buoyancy in the mixed layer is 

An additional relationship linking d to the other buoyancies is needed to give a 
closed set of equations. This is the conservation of buoyancy in the stratified layer 
between the bottom and z,: 

where A ,  is the buoyancy at z = z,, the top of the fountain, and the last two terms 
allow for the loss of buoyancy due to the relative motion of the front and x, (cf. (18)). 

A solution for these equations is easily obtained for the first front condition. At 
t = 0 and until t = t*, AT = 0 so (29) can be combined with (27) and (28) to give 

where 2, = A,/A, ,  i.e. the density difference is scaled with the density difference 
between the input fluid and the environment. The solution of this equation, 

is the sum of a linear term and a decaying exponential. The argument of the exponent 
(0, + l ) /Ze  increases in magnitude with increasing Fr because z, was observed to 
change little in those experiments: it was between 2 and 4 cm in all cases. For the 
smallest Fr (about 9) the argument was about 0.6 so the exponential term was 
negligible for t"> 5 or about one half t*. For a large Fr of 100 the argument is about 
6 and so the term is negligible for t"> 0.5 or about one-fortieth oft*. These values 
show that the mixed layer does not produce a jump in the density profile, nor does 
it have a large effect on the shape of the rest of the profile. This is also shown in the 
calculations of the profile discussed below. 

3.4.2. Calculation of the density projile 
The profile for time t < t* was calculated using (31) for the density at a time t ,  and 

(15) for the elevation at a time t ,  later. The profile for t = t ,  + t ,  was then plotted from 
the individual calculations. The three dashed profiles a t  the left of figure 5 are the 
results for the times corresponding to the measured points. These curves were 
computed using a mixed-layer thickness of 2.9cm, a value chosen for numerical 
stability. The agreement is good for the higher elevations but the lower part of the 
calculated profile of course has a constant density. For the smallest time the profile 
was also calculated assuming no mixed layer. The result is shown as a dotted curve 
where it deviates from the previous curve; it agrees at the lower levels with the 
measurements but displays a jump a t  the top of the profile. These two calculations 
show that a uniform density distribution in the mixed layer is not an accurate 
description for small times after the start of the flow. 
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FIGURE 10. Density profiles produced by it vertical axisymmetric fountain. The full lines drawn 
represent the numerical simulation and the points are measured values. The dashed line of (a)  is 
the limit as t tends to infinity. (a )  Experiment A17 (source parameters as for figure 4) :  0,  time 
2 h 0 min, f = 73.8; 0,  time 2 h 50 min, f =  104.6. ( b )  Experiment A14 (r ,  = 0.271 em, &, = 13.7 ems 
s-l, A,, = 7.5 cm s-*, Fr, = 17.7). 0, time 1 h 30 min, f =  56.9. 

The relationships defining the density profile at  longer times are the combination 
of (27) and (28), together with (29). In dimensionless variables (dropping the - in the 
following three equations and the associated discussion) these are 
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and d d  z, 
dt z ,  
_ -  - - (1 - A T  -$a- A T )  zr), (33) 

with the initial conditions that 2, A ,  and A ,  are zero a t  time zero. These equations 
are the core of the numerical solution for the density profile which proceeds as 
follows. For each time step St the increases in A ,  and d a r e  evaluated using the values 
of all variables at the start of the step. At the same time z ,  and t* are calculated a t  
the start of the step using (13) and (16). Three quantities A , , z ,  and t* are recorded 
for a time delay of t* which is converted to an integer multiple of St. As the 
calculation proceeds, 

A , ( t + t * )  = A J t )  (34) 

is linked to the depth below the free surface which is calculated simultaneously from 
(26). The density profile a t  a time t ,  is evaluated by recording A ,  as a function of y 
for the region between the free surface and the top of the fountain and A as a function 
of z for the variable time delay given in (24). The distance below the top of the 
fountain, corresponding to this value of A ,  is found by subtracting z from the value 
of z ,  that existed when A was A, ,  i.e. when the front was formed. 

This numerical simulation of the density profile is compared with the measured 
profile in three typical cases. Figure 5 shows the initial period of an experiment in the 
smaller tank (using the three profiles on the right, at the longer times) and figures 
lO(a) and 10(b) plot results obtained in a larger tank for a longer period, and in all 
cases the agreement is good. In  particular the measured density at the bottom of the 
tank i, was compared with the value calculated in the numerical simulation. The 
agreement varies from &2?40 to +lo% which indicates that some of the 
experimental parameters may not be defined accurately enough ; the calculation is 
sensitive to both the diameter of the source and the location of the virtual source, 
determined as described in 5 3.1. 

4. Line fountains 
In  all previous studies of jets and plumes there has been a close similarity between 

the two-dimensional and axisymmetric configurations. With the expectation that 
this similarity should also exist for fountains some experiments were undertaken and 
the analysis was adapted to describe the line fountain. Some new unsteady features 
were observed in our experiments, however, and we are led to the conclusion that the 
two-dimensional case is not as straightforward as was at first supposed. 

4.1. Apparatus and technique 
A tank 1.2 m long, 0.1 m wide, 0.6 m deep was constructed of acrylic sheet and a line 
source 0.1 m long was installed across the centre perpendicular to the long dimension 
of the tank. The source was a line of 0.5 mm holes spaced 5 mm apart on a circular 
pipe 8 mm in diameter. From the study of Crapper (1977) it  was expected that the 
circular jets from the 0.5mm holes would coalesce to a two-dimensional jet about 
3.5cm above the pipe and that the virtual origin would be at the outlet. The 
momentum flux from the holes should be conserved as the two-dimensional flow 
develops. However, the momentum of the flow from these holes cannot be predicted 
with certainty, so the value of b, was actually determined from experiments using the 
box-filling technique analogous to that described in $3.1. The tank was filled with salt 
water and fresh water was injected through the line of holes ; a front formed as the 



Turbulent fountains in an  open chamber 579 

weakly buoyant jet impinged on the free surface and spread laterally. A plot of the 
square root of the elevation of the front as a function of time showed a linear 
variation for distances greater than 5 cm above the source, which corresponds to the 
entrainment rate K zf to be expected for a line jet, as set out below. Thus the flow 
in the jet was two-dimensional for z > 5 cm. The slope and intercept of the line 
indicated that the virtual origin was indeed at  the outlet of the holes and that 
b, = 0.00164 cm if the entrainment coefficient is a = 0.106, as determined by 
Kotsovinos & List (1977). The entrainment coefficient defines the entrainment 
velocity 

v, = aw, (35) 
where w is the centreline velocity in the jet. Using this definition in the conservation 
equations for volume and momentum fluxes and assuming a Gaussian profile for 
velocity we obtain 

w = 2-f(mo/az)t, (36) 

b = 4 d a z ,  (37) 

q = 2t(m,az)t, (38) 

where b is the half width of the velocity profile, measured where the velocity has 
fallen to l /e  of its central value w, and m, = q;/2b0 is the momentum flux per unit 
length from the source. 

During the course of these calibration experiments it was found that damping 
screens had to be installed along the endwalls of the tank to overcome the lateral 
momentum of the jets along the surface. Without the screens the jet was deflected 
downward by the walls and formed a turbulent mixed layer with a thickness 
approaching half the depth of the tank (cf. Baines & Turner 1969, $4.1). Effective 
damping screens were made of a 15 cm diameter roll of commercial fly wire jammed 
vertically into the 10 cm tank width. When the lateral jet flowed through the screen, 
reflected from the wall and returned, the resulting mixed layer was about half the 
width of the outflowing jet as it reached the free surface. These screens were also used 
in all the experiments with line fountains. 

In the six experiments with line fountains the tank was initially filled with fresh 
water and salt water was injected from the source. At the start, the source supply line 
was filled with a suspension of mica flakes so the initial 10s of the fountain 
development could be easily observed in a sheet of light in the centre of the tank. 
Photographic floodlights were shone through slits 1 cm wide on each end of the tank 
and these illuminated the fountain and the front that formed in the environment. The 
elevation of the front could be read with an accuracy of 1 mm from a scale suspended 
in the sheet of light. 

4.2. Observations of line fountains and fronts 
The appearance of a line fountain is rather different from that of the circular one. The 
symmetrical flow illustrated in figure 3 does not remain steady; figure 11 shows two 
photographs of a more typical case. The top is wider and the downflow narrower than 
in the circular fountain. There does not appear to be a large difference between the 
profile of the upflow and that observed in a line jet: both show a similar linear 
expansion. The downflow does, however, vary considerably as the fountain develops 
and this affects the maximum height and observed profile. 

The shape of the fountain in the initial period when the flow starts is best described 
by referring to the series of sketches in figure 12. The time interval between sketches 
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FIGURE 11. Photographs of a line fountain taken during experiment B6 (b,  = 0.00164 cm, po = 
0.464 om2 s-l, A ,  = 73.2 cm SP). (a) 1 min after start of experiment, illustrating the non-symmetrical 
profile, with a single large eddy on the left which extends from the top to the elevation of the source. 
( b )  31 min after start, showing a symmetrical phase with large eddies at the top and a narrow 
downflow near the source. The first front has risen above the fountain and a second front (formed 
by the injection of dye at 30 min) lies below it and is distorted by the downflow. 
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r- 

FIQURE 12. Sketches of the profile of a line fountain during the establishment of the flow. The time 
interval between sketches (in sequence from left to right, top to bottom) is about 10 s, Fr x 8000. 

was about 10 s. Initially, the fountain is identical to a two-dimensional starting jet 
as shown in figure 12(a, b).  The upflow is a linearly expanding turbulent flow which 
entrains surrounding fluid. Some fluid enters the head, which consists of two small 
volumes of rotating fluid. As time progresses the top advances more slowly and the 
head increases in width. Figure 12(c-f) shows this development. When the top 
reaches the initial maximum height the head is large and there is a downflow along 
the sides. Shortly thereafter the top drops in elevation and briefly leaves behind a 
layer of fluid. Since this is heavier than the environment it falls back into the 
fountain. The drop to the lower, quasi-steady height is probably due to the upflow 
now entraining heavier fluid from the downflow, so the buoyancy now has a larger 
negative value whereas the entrainment was previously from the environment. At 
this stage the head grows and becomes unstable. The top oscillates up and down and 
to each side, so a unique value of the elevation of the top is difficult to define. 

The unsteadiness of the profile shape is more marked as the Froude number of the 
source increases. As the relative momentum of the upflow increases, there is an 
unsteady production of vorticity that is manifested in the oscillation sketched on 
figure 13. The photographs in figures 11 (a) and 11 ( b )  show the extremes of the shapes 
observed. At the start of the irregular cycle the profile was symmetrical (figure 11 b) 
and the top rose to a maximum near that for the initial stage when the fountain was 
turned on (figure 12). The downflow was then deflected to one side; the top descended 
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FIQURE 13. Sketches of the oscillation of a line fountain observed for a steady source flow at 
large Froude number. The transition between the two modes occurred at random intervals. 

as the unsymmetrical lobe grew and reached a minimum height, as shown in figure 
11 (a) .  It oscillated irregularly between these extremes and heavy fluid was shed 
unevenly into the environment. On several occasions the large lobe was shed laterally 
and the rotation persisted until it reached the bottom of the tank. After the shedding 
the fountain increased in height to the maximum level. 

Fronts in the environment were created at several times during the experiment by 
introducing fluorescein dye into the source. These progressed up to the top of the 
fountain and beyond (figure l i b ) .  At all times after passing the top the fronts 
remained a constant distance below the free surface. The first front was easily 
identified in the density profiles measured at the end of the experiment. 

4.3. Analysis of the height of line fountains 
If it is assumed that the maximum height depends only on the momentum and 
buoyancy fluxes, as is the case for the circular fountain, then the dimensionless 
representation is 

zm = constant x mojo;, (39) 

where f ,  is the buoyancy flux per unit length. This can be written in terms of the 
Froude number as 

where 

zm - = constant x Frg, 
b, 

and b, is, as before, the half width of the source. 
Figures 14(a) and 14(b) are plots of the observations made of the fountain heights. 

The measurements on figure 14 (a)  are those reported by Campbell & Turner (1989), 
though they were not plotted out in detail in that paper. The source was a slot 
ranging from 3 mm to 10 mm in width, so the Froude number was relatively small. 
The best-fit mean line gives the value of the constant in (40) as 0.65. The 
measurements made with the source described above are plotted in figure 14 ( b ) .  The 
same line fits the data but the scatter is very much larger, and some of the variation 
can be explained in terms of the source geometry. For Fr < 500 (or Frg < 4000) the 
observed height is less than 5 cm which means that the jets from the source holes had 
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FIGURE 14. The height of line fountains as a function of the source Froude number. (a)  Small-F'r 
measurements of Campbell & Turner (1989): +, b,, = 0.50; x , 0.325; and 0, 0.15. (b )  Large-Fr 
measurements for the six experiments carried out using the tank and source described in the 
present paper. x , initial maximum ; 0, quasi-steady symmetrical height ; and , non-symmetrical 
experiments. 
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not coalesced to a line flow, so the maximum is that  of circular fountains. In  a few 
cases the fountain was clearly non-symmetrical and the height was about 20 % lower 
than the mean line. A few observations were made of the initial maximum height as 
the flow was started and this was 30% above the mean line. 

4.4. Entrainment relations for a line fountain 
The form of the entrainment velocity as a function of elevation is developed by 
analogy with the axisymmetric fountain though, as will be seen below, the method 
is less satisfactory for the line fountain. First, dimensional consistency requires that 

%= qo Frs f(+ 6,  Frs 

where qe is the volume flux entrained by the fountain between z ,  and z .  Second, the 
form of the function is assumed to be such that the same variation of ve with z exists 
as for the simple two-dimensional jet. That is, from (35) and (36) we obtain 

-- q e ' 2  - C-B(-)', b, Frr 
qo Fra (43) 

where B and C are constants. An attempt has been made to determine B from the 
motion of the fronts in the environment and the results are presented in 54.5. An 
approximate value for B can be obtained using the following comparison with a line 
jet. Differentiating (41), and allowing for the fact that qo includes entrainment into 
both sides of the line fountain, gives 

ve = IB b-tz-t. 
4 Po 0 

For a jet, combining (35) and (36) leads to 

2.' = &2-4 qo z-;, 
a 1  

so that B = 2ra3 = 0.55, using CY = 0.11. 

(44) 

(45) 

4.5. Elevation of a front 
The motion of a front is defined by the conservation of volume between the position 
of the front and the bottom of the tank. Thus the upward velocity of a front is 

dz 
dt e' 

L-=g +g  

where L is the length of the tank, and this is conveniently stated in dimensionless 
variables as 

where 2 = Z / b o ,  f= tqo/Lbo, q e  = qe/qo, 

and time is measured from the commencement of flow. The Froude number Fro, do 
and zmi are defined as the values a t  this same instant. Substituting (43) in (46) leads 
to the dimensionless form 

dz" 
- = l+CFr!-B&. 
dt 
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From (41), Fri depends now on A;: so that one can write linear approximations for 
Fr and z, in the form 

Frf = F r i  (1 ++J)), 

2, = Zmi(1  +$J), (50) 

(49) 

where Jdenotes the mean density below the front dmade  dimensionless with A ,  (cf. 
(10) and (13) and the notation in $3).  In the time interval of the front rising to x, all 
of the buoyancy excess which flows from the source is deposited in the layer of 
thickness z,+z,, where 2, is the height of the source, so that 

Equation (51) provides the final relationship needed to eliminate J a n d  C from (48) 
and (49) and the resulting first-order differential equation defining the front is 

dz” Bz” - 
7+&= l+B&,,+-+t. 
dt 3 Zki 

The only parameters in this equation are zmi and zp, which are defined by the initial 
conditions, and the entrainment function B. An analytical solution has not been 
found so (52) has been solved numerically using a fourth-order Runge-Kutta 
technique. The solution was repeated for three values of B, 0.5,0.75 and 1.00 for each 
front produced in the six line fountain experiments. The results have been compared 
with the measured elevations and the agreement between the data and the numerical 
solution is also shown for two experiments, plotted in figures 15(a) and 15fb). The 
value of B for which the best fit was obtained for the several fronts of the six 
experiments was distributed fairly evenly between the above three values, and the 
accuracy of the measurements is not sufficient to permit a more accurate specification 
of B.  The data show that there is a large variation of B that gives a reasonably good 
fit to the measurements, so that this is not a very sensitive method of determining 
this parameter. It is also probable that substantial variations of B can occur during 
an experiment, due to the oscillations in the fountain profile and consequently in the 
rate of rise of the front. 

The mean value of B for line fountains is approximately 0.75, larger than the value 
of 0.55 obtained above for a line jet. Note, however, that in using (45) to obtain that 
estimate we made no allowance for the fact that the outer, downward-moving part 
of the fountain must influence the entrainment from the surroundings. If the 
downflow is treated as a line plume, then the argument used in $3.1 suggests that in 
this case too the downward velocity, and hence the entrainment velocity, will be 
independent of height. This does not match the Z; dependence implied by (43), so 
that, in contrast to the axisymmetric case where the form of the entrainment is the 
same for the up- and downflows, it is not possible to retain the same functional 
dependence on z for both parts of the line fountain. Perhaps it is this fact which 
makes it so difficult to maintain a steady, vertical line fountain : it becomes unstable 
and falls over to one side when the upflow can no longer entrain fluid a t  a steady rate 
from the downflow, and changes to a state where direct mixing from the surroundings 
into the upflow is possible. 
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4.6. Density ~ i s t r~bu~ ion  in the envi ron~~nt  

A numerical simulation of the development of the density profile has been devised 
using the conservation equations, as was done for the axisymmetric case. However, 
the procedure is more complicated for line fountains because of the lack of an 
analytical expression for the position of a front. First, it  can be assumed that in the 
region above the top of the fountain the density distribution is exactly that produced 
by the inflow into the fountain over the whole depth between the source and the 
fountain top ; above this level it remains unchanged. The inflow between the level y 
measured from the (moving) free surface and the top of the fountain is given by 

This leads, using (50) and (51), to the non-dimensional form 

_ -  d y" dt"- I+*. (54) 

The density of the fluid rising above the top of the fountain is equal to the density 
of a fluid parcel that left the mixed layer at  a previous time determined by the above 
analysis of fronts (54.5). The calculation of densities proceeds in time steps, using an 
analogous procedure to that set out in $3.4.2 for axisymmetric fountains. The 
conservation of buoyancy flux in the fountain gives (cf. (27)) 

where most of the notation has already been defined, and c, is a coefficient of order 
unity which reflects the distribution of qe and A over the height of the fountain. 

The conservation of buoyancy A ,  in the mixed layer leads to (cf. (28)) 

where it is assumed that the buoyancy is uniform through the mixed layer and that 
the thickness ze is constant. The third relation required is the conservation of 
buoyancy in the environment between the bottom of the tank and the top of the 
fountain (cf. (29)) 

d d  qo -dz, 
dt L dt 

(zm+zS)- = --A--AT (57) 

where AT is the buoyancy at  z = 2,. 
At  the start of a time step the density distribution is known, so that A,, d a n d  c1 

can be determined. Equations (55), (56) and (57) are then used to calculate the 
change in A ,  during the time step, and the value a t  the end of it. A linear variation 
of z, is also assumed. Equation (52) is then integrated to predict the elevation where 
this value of buoyancy will be found at  all subsequent times until t*, the crossover 
time. The value of c1 can be calculated by integrating the distributions of qe obtained 
from (43) and A from the above procedure. However, this exact scheme has not been 
used in the simulations presented here. Instead we have used the approximation 
c1 = 1, implying that the density distribution in the environment has little effect 
on the determination of the mean density. This is a reasonable simplification, 
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particularly in view of the uncertainties in the value of B = 0.75 that has been used, 
and the fact that the oscillation of the height of the fountain has not been considered. 

In  carrying out the calculation two time intervals are defined. The first is the time 
from the start of the experiment to t,--t*, where t ,  is the time where the distribution 
is to be determined. After A ,  has been calculated, A ,  is predicted for the time t* later; 
(54) is integrated and the value of A ,  is assigned to the coordinate y. In  the second 
interval between t,-t* and t, the distribution between z = 0 and z = z, is determined 
by integrating to give A ,  and then predicting z for a particular time using (52). This 
gives A as a function of z. 

The density profiles for all six experiments on line fountains were calculated using 
this numerical simulation. Figure 16 (a+) presents the measured distributions as 
points and the simulations as the continuous lines for three of these experiments. The 
first two show the effect of changing the level of the source. Discharge and buoyancy 
flux were the same but the source elevation differed by 4.2 cm. The steeper density 
profile in figure 16(a) is the result of mixing over a larger volume below the source. 
The agreement between measurement and calculation is good in both cases but it 
should be noted that the calculated curves and points have been matched where the 
buoyancy is zero. This is necessary because the transient behaviour as the fountain 
and mixing layer are established is not included in the calculation. No unstable 
height oscillations were seen in experiment B6 but they were observed in the later 
stages of B7. Thus the deviation between the points and calculations in figure 16 (b )  
near z = 30 cm is probably the result of the steepening of the density gradient 
produced by entrainment a t  higher levels than the nominal top of the fountain: 
entrainment always produces density gradient steepening. Figure 16 (c) shows this 
effect very clearly. In experiment B8 the profile of the fountain oscillated over a large 
range throughout the experiment. The result is a density distribution that is steeper 
in that part of the layer between the free surface and the top of the fountain than 
is predicted by the numerical simulation assuming steady conditions. 

The agreement between the measured and calculated buoyancies in the mixed 
layer was very good except in two cases where the conditions differed significantly 
from those assumed. When the Reynolds number of the jets from the source was 
small the fountain upflow remained laminar. Thus the fountain rose much higher 
than it would if it  had been turbulent, and it entrained less of the turbulent 
downflow, so the measured buoyancy in the layer was higher than predicted. 

5. Discussion and conclusions 
We have presented measurements of the time evolution of the flow in fountains 

and the density distributions they produce in their environment over a wide range 
of input conditions. The excellent agreement between the experimental results and 
the theory developed to explain them indicates that our physical model gives a good 
description for the flow and mixing behaviour of both axisymmetric and line 
fountains. The results have been presented in dimensionless form, so that once the 
input parameters (the size and nature of the source vent, the rate of inflow and the 
density difference between the source fluid and its surroundings) are known the 
whole subsequent history can be calculated for fountains discharging into a region of 
constant cross-section. The only internally determined parameter, the rate of mixing 
into a fountain from its immediate surroundings (the constant B )  has been evaluated 
from laboratory data, and the same numerical value can be applied to various 
prototype flows. Provided the fountains are turbulent the scale of the motion is 
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immaterial, and so is the working fluid (assuming of course the density differences are 
small and the fluids are miscible in any particular case), so that the same results can 
be applied to water, air or magmas. The case of a fountain surrounded by fluid with 
a very different viscosity has been considered by Campbell & Turner (1985). Other 
applications have been, or will be, treated in more detail elsewhere but in conclusion 
we return to the examples which motivated this study and make some general points 
about the meaning and use of our results in those and related contexts. We have not 
addressed the problem of fountains in a region with a varying cross-section, though 
this too should be amenable to numerical calculation once the geometry is specified 
(proceeding along the lines suggested for plumes in confined regions by Baines & 
Turner 1969). 

The application to replenished magma chambers has recently been discussed by 
Campbell & Turner (1989), but there are several points made in that paper which can 
be clarified in the light of the present results. The need to consider the two stages of 
motion, before and after the first front overtakes the top of the fountain, is reinforced 
by the present study. It has been shown that the density gradient in the layer of 
hybrid magma below the top of the fountain continually decreases, and will become 
very small a t  large times. Using this result we have predicted theoretically that the 
fountain top will rise at close to half the speed corresponding to the rate of addition 
of fluid in the fountain. This provides a more satisfactory and quantitative 
explanation of the experimental results presented in the previous paper. With the 
line fountains we have observed a new phenomenon which might have some 
observable consequences for magma chambers. The spontaneous instability leading 
to the deflection of the fountain to one side could produce spatial non-uniformities, 
and extra variations in time even with a steady input. Our understanding of the line 
fountain and particularly of its unsteady behaviour is not as complete as it is for the 
axisymmetric case, and further experimental work is needed. 

For the application to the heating of large buildings, in addition to providing the 
quantitative information on which detailed design criteria can be based, the results 
suggest overall strategies which might be adopted to make most efficient use of a 
given heat source. For example, starting with a completely unheated building the 
aim might be to produce a heated jet of air a t  the ceiling (drawn from outside, or from 
near the floor) which mixes initially with as much cold air as possible, by forming a 
fountain which turns back just above the floor. This flow should be continued, with 
the cold air allowed to flow out at the bottom, until the front of heated air has 
reached the floor (ideally a t  the same time as the bottom of the inverted fountain). 
At  that time it would be more efficient to switch the intakes for the heating system 
to the inside of the building near the ceiling, so that no heated air is lost and the 
temperature gradually increases to the desired steady value a t  which it will be 
maintained. 

It has also been shown that axisymmetric fountains inclined a t  a small angle to the 
vertical mix with their surroundings more rapidly than vertical fountains. A small 
deflection (7") from the vertical increases mixing in two ways. First, the penetration 
is larger (by 17 %) and second, the entrainment a t  all elevations is about 40% larger 
for the inclined fountain. This increase is of practical importance in engineering 
applications where intensive mixing is desirable, since it is obtained a t  no extra cost. 
It would be useful to study the variation with angle over a wider range to see if the 
entrainment can be further increased. In  natural applications such as magma 
chambers, the angle of injection need not be exactly vertical, and so for that case too 
i t  would be relevant to explore this question further. 
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Another possible application of a fountain-like flow is to the destratification of 
water reservoirs. In summer, solar heating produces a layer of warm water on top of 
the deeper, colder water. This stable distribution isolates the colder water from the 
transfer of oxygen from the atmosphere and produces undesirable biological effects. 
There can also be a significant chemical stratification in some reservoirs. It is 
suggested that installing a ducted pump on the bottom of the reservoir with the 
outlet directed upwards (perhaps at  a small angle to the vertical) would mix the 
layers by creating a fountain at the interface. From the results described in this 
paper it is evident that after a transient period there would be three layers. In  
between the original layers there would be a mixed region with its upper boundary 
at the top of the fountain and density which approaches that of the upper layer. 
Entrainment from the lower layer would contribute to the expansion of this middle 
layer, and the evolution could be calculated using the above analysis, modified to 
include the shrinking of the lower layer. One could also treat the flow and mixing 
produced by a pump installed at  the surface and directed downwards, which may be 
a more efficient geometry if, as is usually the case, the upper layer is the thinner one. 

The ideas described in this paper are currently being extended to include a 
distributed inflow or outflow of fluid at the level of the fountain source. A detailed 
theory and corresponding experiments are described by Baines & Reedman (1990), 
with the application to problems of building ventilation particularly in mind. 

Most of the experiments described in this paper were carried out while W. D. B. was 
a Visiting Fellow at The Australian National University, where his work was 
supported by an International Cooperative Research Grant from the Natural 
Sciences and Engineering Research Council of Canada and also by NSERC Grant 
A-1066. We acknowledge Tony Beasley and Derek Corrigan for their technical help in 
preparing and carrying out the experiments, Ross Wylde-Browne for assistance with 
the photography, Karen Buckley for her patient wordprocessing of the many drafts 
of the manuscript and Clemantine Krayshek for drawing the diagrams. Myriam 
Bormans, Herbert Huppert and Paul Linden made valuable comments on an earlier 
draft. 
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